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We show that a majoritarian relation is, among all conceivable binary relations, the most representative
of the profile of preferences from which it emanates. We define ‘‘the most representative’’ to mean
that it minimizes the sum of distances between itself and the preferences in the profile for a given
distance function. We identify a necessary and sufficient condition for such a distance to always be
minimized by a majoritarian relation. This condition requires the distance to be additive with respect
to a plausible notion of compromise between preferences. The well-known Kemeny distance does
satisfy this property, along with many others. All distances that satisfy this property can be written
as a sum of strictly positive weights assigned to the ordered pairs of alternatives by which any two
preferences differ.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The ‘‘preference of the majority’’ is indisputably one of the
ost widely used and discussed social preference. However, the
ormative justifications of the ‘‘majoritarian’’ way of aggregating
ndividual preferences are surprisingly thin. One important justi-
ication has been provided by May (1952), who proves that when
here are only two alternatives to be compared, the majority rule
s the only mapping of individual preferences into a social ranking
hat is complete, anonymous, neutral and positively responsive. A
ell-known (at least since Condorcet in the late XVIIIth century)

imitation of the majority rule is its failure to satisfy transitiv-
ty. This limitation is obviously not addressed by May (1952)
ho restricts his analysis to the two-alternatives case. In the
iscussion of his impossibility theorem, Arrow (1963) (p. 101),
ecognizes that the generalization of May’s result to more than
wo alternatives is not easy. Papers who have proposed such a
eneralization include Dasgupta and Maskin (2008) and Horan
t al. (2019). However, they have done so in the case where the
ndividual preferences are so restricted that the majority rule
s transitive or, at least, admits a maximal element (called a
ondorcet winner).

✩ We are indebted with the usual disclaiming qualification to Antonio Nicolo
for comments and suggestions, and to two referees of this journal for their
extremely thoughtful reports. We have found quite rare in our experience with
submitting and publishing papers in scholarly journals to receive reports of
such depth and quality. We also gratefully acknowledge the financial support
of the French Agence Nationale de la Recherche (ANR) through its funding of the
European University of Research AMSE (ANR-17-EURE-020).
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An alternative way of justifying the preference of the major-
ity would be of course to combine results in May (1952) and
Arrow (1950) through the well-known axiom of binary inde-
pendence from irrelevant alternatives, which requires the social
ranking of any two alternatives to depend only upon the individ-
uals’ ranking of these two alternatives. One could then justify the
preference of the majority as being the only mapping of individ-
ual preferences into a social ranking that is complete, anonymous,
neutral, positively responsive, and binarily independent of irrelevant
alternatives. However, as recognized by May (1952) himself, the
appeal of the binary independence of irrelevant alternatives and
neutrality axioms is not clear.

In this paper, we therefore examine an alternative justification
for the majority rule. Specifically, we show that the preference
of the majority qualifies as being representative of the collection
of preferences from which it emanates. The notion of repre-
sentativeness on which our argument rides is that underlying
the choice of several measures of ‘‘central tendency’’ in classical
statistics. A common justification indeed for the mean of a set of
numbers as a ‘‘representative statics’’ for these numbers is that
the mean minimizes the sum of the squares of the differences be-
tween itself and the represented numbers. Similarly, the median
of a set of numbers – another widely used measure of ‘‘central
tendency’’ – is commonly justified by the fact that it minimizes
the sum of the absolute values of those same differences, while
the mode minimizes the degenerate distance between numbers
that is 1 if the numbers differ and 0 if they do not. In a similar
spirit, it is common in regression analysis to fit a cloud of points
indicating the values taken by a ‘‘dependent’’ variable and a
collection of ‘‘independent’’ ones by a specific function whose pa-
of the majority representative ?. Mathematical Social Sciences (2021),

rameters are ‘‘estimated’’ by minimizing the sum of the (squares
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f) the discrepancies between the predicted and observed values
f the dependent variables. The parametric curve estimated in
his fashion is commonly portrayed as ‘‘representative’’ of the
loud of points.
We show herein that the ‘‘preference of the majority’’ is repre-

entative in an analogous fashion of the collection of preferences
rom which it emanates. We specifically show that the preference
f the majority minimizes the sum of distances between itself and
he preferences for a significant class of distance functions over
hese preferences which we characterize. We indeed identify the
roperty that any distance on preferences – described as binary
elations – must satisfy in order to be minimized by a majori-
arian preference. This property happens to be that of additivity
f the distance with respect to any three binary relations such
hat one of them is a Paretian aggregation of the two others. It is
ommon to refer to a preference which is a Paretian aggregation
f two others preferences as being ‘‘in-between’’ those two. A
istance is additive in this sense if for any two preferences, the
um of the distances between each of the two preferences and
Paretian aggregation of them is always equal to the distance
etween these two preferences.
Our analysis can thus be seen as a generalization of a liter-

ture that discusses the representativeness of the majoritarian
reference – in the sense of distance minimization – with respect
o the specific Kemeny (or Kendall) distance initially charac-
erized by Kemeny (1959) and Kemeny and Snell (1962) for
inear preferences, and significantly generalized to weak and even
on-transitive preferences by Bogart (1973, 1975). It has been
nown indeed since at least (Barbut, 1980) that the prefer-
nce of the majority minimizes the sum of pairwise disagree-
ents between itself and all preferences from which it emanates

see Monjardet (2005) for a good synthesis). While this Kemeny
istance minimization property of the preference of the majority
s very often appealed to in contexts where the preference of
he majority is transitive (see for example Demange (2012)),
arbut (1980) has indicated that nothing in the argument was
epending upon transitivity. The literature has also established
hat the majoritarian preference can be seen as the ‘median’ pref-
rence in a metric space over preferences in which the metric is
he Kemeny distance. For example, Young and Levenglick (1978)
ave characterized in this fashion all Condorcet consistent rules.
The current paper extends the results on the representative-

ess of the majority by showing that it holds for the significantly
arger class of all distances that are additive – in the sense
bove – between any three preferences such that one is between
he other two. This property of additivity has been used as a
rimitive axiom, along with others, in all the characterizations
f the Kemeny distance that we are aware of (in particular those
f Kemeny (1959), Kemeny and Snell (1962), Bogart (1973, 1975)
nd, more recently, Bossert et al. (2016)). We show in this paper
hat this property of additivity characterizes in fact the much
arger class of distances between any two preferences that can
e written as a sum of more elementary distances between the
airs of alternatives by which the two preferences differ. While
he Kemeny distance is one such distance – which assumes that
ny two distinct alternatives have a distance of 1 – there are many
thers that allow different pairs of alternatives to have different
ositive distances. All such additive distances, and only them,
appen to be minimized by the preference of the majority.
The plan for the remainder of the paper is as follows. The next

ection introduces the notation and the model and provides the

ain results while Section 3 concludes. i

2

2. The model and the results

We start our analysis by recalling some terminology and no-
tation pertaining to binary relations. By a binary relation R on a
finite set X , we mean a subset of X × X . For any binary relation R
on X , we define its symmetric factor I(R) by (x, y) ∈ I(R) ⇐⇒

[(x, y) ∈ R and (y, x) ∈ R] and its asymmetric factor P(R) by
(x, y) ∈ P(R) ⇐⇒ [(x, y) ∈ R and (y, x) /∈ R]. A binary relation
R is asymmetric when it coincides with its asymmetric factor. A
binary relation R on X is:

(i) reflexive if (x, x) ∈ R for every x ∈ X .
(ii) transitive if, for any x, y and z ∈ X , (x, z) ∈ R always follows

(x, y) ∈ R and (y, z) ∈ R.
(iii) complete if {(x, y), (y, x)}∩R ̸= ∅ for every distinct x, y ∈ X .
While binary relations often considered in social choice theory

are taken to be reflexive, transitive and complete, these two
latter assumptions will play no major role in the current analysis.
Indeed, the results that will be established about the representa-
tiveness of the majoritarian binary relation – that is itself often
intransitive as we all know – are valid also when the binary
relations over which the majority is defined are neither transi-
tive nor complete. However, the requirement that these binary
relations be reflexive will play some role in the arguments.1 We
accordingly denote by R the set of all reflexive binary relations.
Finally, for any two binary relations R and R′, we denote by R △ R′

their symmetric set difference defined by R △ R′
= (R∪R′)\(R∩R′).

We begin by discussing the notion of a compromise between
two binary relations. The cornerstone of the compromise’s idea
is that of a (Pareto) respect for unanimity. This idea underlies the
following notion of betweenness between two binary relations.

Definition 1. For any two binary relations R and R′′ on X , we
say that the binary relation R′

∈ R is between R and R′′ if only if
(R ∩ R′′) ⊆ R′

⊆ (R ∪ R′′).

In words, R′ is between R and R
′′

if R′ always agrees with the
unanimity of R and R′′ – when the latter occurs – and, somewhat
onversely, never expresses a preference for one alternative over
he other if this preference is not also expressed by either R
r R′′. We observe trivially that this notion of betweenness is
ymmetric: R′ is indeed between R and R′′ if and only if it is
etween R′′ and R. It turns out that an alternative – but actually
quivalent – definition of betweenness can be formulated for
omplete binary relations. This equivalent definition makes, in our
iew, the notion of betweenness underlying Definition 1 even
ore intuitive. We formulate this equivalent definition in the

ollowing lemma proved, like all formal results in the paper, in
he Appendix.

emma 1. Let R, R′ and R′′ be three complete binary relations on
. Then R′ is between R and R′′ as per Definition 1 if and only if it
atisfies:

(i) (x, y) ∈ R and (x, y) ∈ R′′
H⇒ (x, y) ∈ R′ and,

(ii) (x, y) ∈ P(R) and (x, y) ∈ P(R
′′

) H⇒ (x, y) ∈ P(R′).

Hence, as stated in Lemma 1, a (complete) binary relation is
etween two others if and only if it results from a Paretian aggre-
ation of those two binary relations.2 For any two binary relations

1 The requirement that binary relations be reflexive is actually not crucial
or the analysis. We could just equally well assume the binary relations R
onsidered herein to be irreflexive and, therefore, be such that (x, x) /∈ R for
ll alternatives x ∈ X . However, it is important that the reflexivity/irreflexivity
tatus of an alternative be the same for all alternatives considered. We would
ave some difficulties in handling (weird) binary relations R that would consider
hat (x, x) ∈ R for some x and (y, y) /∈ R for some other y.
2 The Paretian aggregation underlying Definition 1 satisfies what is known

n the social choice literature (see e.g. Suzumura (2001)) as the weak Pareto
rinciple. Other authors, such as Grandmont (1978), have defined betweenness
n terms of a Paretian aggregation satisfying the strong Pareto principle.
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and R′′, we let B(R, R′′) = {R′
⊂ X×X : R′ is between R and R′′

}.
ince, for any R and R′′, both R and R′′ are (trivially) between R and
′′, the set B(R, R′′) is never empty. We now formally define the
ajoritarian binary relation associated with any given profile of
inary relations.3

efinition 2. Given a profile of n binary relations (R1, . . . , Rn)
Rn for some integer n ≥ 2, we say that the binary relation
on X is majoritarian for (R1, . . . , Rn) if R ∈ B(Rw(R1, . . . , Rn),

s(R1, . . . , Rn)) where the weak and the strict majority relations
w(R1, . . . , Rn) and Rs(R1, . . . , Rn) associated to (R1, . . . , Rn) are
efined by:
w(R1, . . . , Rn) = {(x, y) ∈ X × X : #{i : (x, y) ∈ Ri} ≥ n/2} and
s(R1, . . . , Rn) = {(x, y) ∈ X × X : #{i : (x, y) ∈ Ri} > n/2}.

The strict majority relation Rs(R1, . . . , Rn) has been called the
ondorcet relation by Barbut (1980). A binary relation R is there-
ore defined to be majoritarian if it is between the Condorcet rela-
ion Rs(R1, . . . , Rn) and the weak majority relation Rw(R1, . . . , Rn).
bserve that when n is odd, then Rs(R1, . . . , Rn) is the unique
ajoritarian relation associated to (R1, . . . , Rn). Observe also that
hen n is odd, this unique majoritarian relation Rs(R1, . . . , Rn)
ill be complete if the binary relations R1, . . . , Rn are all com-
lete. However, when n is even, there will typically be many
ajoritarian relations, some of them possibly incomplete. For
xample, if one considers the profile of two binary relations R1
nd R2 where, for two distinct alternatives x and y, (x, y) ∈ I(R1)
nd (x, y) ∈ P(R2), then one observes that (x, y) ∈ P(Rs(R1, R2))
nd (x, y) ∈ I(Rw(R1, R2)) are two different majoritarian binary
elations (when restricted to the set {x, y} ). Moreover, one can
bserve that if all binary relations in the profile (R1, . . . , Rn) are
omplete, then there will always exist at least one complete
ajoritarian relation (irrespective of whether n is odd or even).
We also record for further reference the following obvious

and therefore unproved) remark that results from the defini-
ion of a majoritarian binary relation (given the definition of
etweenness).

emark 1. A binary relation R is majoritarian with respect to the
rofile of n binary relations (R1, . . . , Rn) (for some integer n ≥ 2)
f and only if it satisfies, for every x and y ∈ X, (x, y) ∈ R H⇒

{i : (x, y) ∈ Ri} ≥ n/2 and (x, y) /∈ R H⇒ #{i : (x, y) ∈ Ri} ≤ n/2.

The main contribution of the paper is to characterize any
ajoritarian binary relation over some profile as a minimizer of

he sum of the pairwise distances between itself and the binary
elations of the profile for some distance function. As it turns
ut, the distance-minimizing property of a majoritarian binary
elation depends crucially upon a property of the distance that
e refer to as ‘‘between-additivity’’.
We start by recalling the definitions of semi-distance and

istance functions as applied to any set S of objects (which could,
f course, be binary relations).

efinition 3 (Semi-Distance and Distance). Given a set S, we call
emi-distance on S any function d : S × S → R+ that satisfies,
or any a and b ∈ S:

(i) Zero at Identity Only: d(a, b) = 0 if and only if a = b.
(ii) Symmetry: d(a, b) = d(b, a).
Moreover, we call distance any function that satisfies, along

ith (i) and (ii):
(iii) Triangle Inequality: d(a, c) ≤ d(a, b) + d(b, c) for all a, b

nd c ∈ S.

3 We are grateful to a referee for suggesting this formal definition of a
ajoritarian relation.
3

We now introduce as follows the property of between-
additivity of a semi-distance when applied to binary relations.

Definition 4. A function d : R × R → R+ is between-additive
if it satisfies d(R1, R3) = d(R1, R2) + d(R2, R3) for every R1, R2 and
R3 ∈ R such that R2 ∈ B(R1, R3).

The property of between-additivity requires the function d
to be ‘‘additive’’ with respect to any combination of two binary
relations taken from three binary relations that are connected
by a betweenness relation. This property, when imposed on a
semi-distance defined on a set of binary relations, is quite strong
since it implies, among other things, that the semi-distance be
actually a distance and, therefore, satisfies the Triangle Inequal-
ity. We state this fact formally in the following Lemma (see
also Lemma 1 in Bossert et al. (2016)), that we prove in the
Appendix.4

Lemma 2. Let d : R × R → R+ be a between-additive
semi-distance on R. Then d satisfies Triangle Inequality and is there-
fore a between-additive distance.

The Triangle Inequality is not the only implication of the
property of between-additivity when applied to semi-distance
functions. As it turns out, any between-additive semi-distance –
or distance thanks to Lemma 2 – between two binary relations
happens to be a sum of strictly positive weights assigned to the
ordered pairs of distinct alternatives by which the two binary re-
lations differ. We state this implication formally in the following
proposition (proved in the Appendix).5

Proposition 1. A semi-distance d : R × R → R+ is between-
additive if and only if there exists a function δ : X × X → R+ such
that for any two binary relations R1 and R2 one has:

d(R1, R2) =

∑
(x,y)∈R1∆R2

δ(x, y)

A well-known member of the class of between-additive (semi)
distances is the Kemeny distance, denoted dK , for which the func-
tion δK of Proposition 1 is the discrete distance function defined
by:

δK (x, y) = 1 if x ̸= y
= 0 otherwise

Along with other axioms, the property of between-additivity has
often been used in the literature to characterize the Kemeny dis-
tance (see e.g. Kemeny (1959), Kemeny and Snell (1962), Bogart
(1973, 1975), Can and Storcken (2018) and Bossert et al. (2016)).
Proposition 1 makes clear that the Kemeny distance is only one
(very) specific member of the class of between-additive distances.
We also find worth emphasizing that the weighting function δ

does not need to be a semi-distance. Contrary to what is the case
for the Kemeny distance, the pairs (x, y) and (y, x) may indeed be
weighted differently in their contribution to the distance between
two binary relations.

The following example provides a well-known example of a
distance between binary relations that is not between-additive.

4 Bossert et al. (2016) present their unproved Lemma 1 as ‘‘an immediate
onsequence of Theorem 3 of Can and Storcken (2015)’’. Yet, to the very best of
ur understanding, Theorem 3 in Can and Storcken (2015) deals with distances
r dissimilarity functions defined over orderings. Our approach here applies to
ny binary relation. We therefore find useful to provide a proof of the result for
his general case as well.
5 Here again, we are grateful to a referee for suggesting this proposition.
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xample 1. The Spearman (1904) distance (see Monjardet (1998)
or a comparison of this distance with that of Kemeny) is denoted
S and is defined by dS(R1, R2) = [

∑
x∈X (r

1(x)− r2(x))2]1/2 where,
or i = 1, 2, r i(x) denoted the rank of alternative x in the binary
elation Ri defined by:
i(x) = 1 + #{a ∈ X : (a, x) ∈ P(Ri )}

t is readily seen that the Spearman distance is not between-
dditive. For example if we take X = {a, b, c} and the binary
elations R1, R2 and R3 defined by:

R1
= {(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)},

R2
= {(a, a), (b, b), (c, c), (b, c), (b, a), (a, c)} and

R3
= {(a, a), (b, b), (c, c), (c, b), (b, a), (c, a)}

it is clear that R2
∈ B(R1, R3). However:

dS(R1, R3) = 2
√
2 < dS(R1, R2) + dS(R2, R3) = (1 +

√
3)

√
2

We now turn to the two main results of this paper. The
irst one states that a binary relation minimizes the sum of
emi-distances between itself and a collection of binary relations
or some between-additive semi-distance function if and only if
he binary relation is majoritarian with respect to the considered
ollection of binary relations. We state formally this result as
ollows.

heorem 1. Let d : R × R → R+ be a between-additive
emi-distance (or distance thanks to Lemma 2) function and, for
ome integer n, let (R1, . . . , Rn) be a profile of reflexive binary re-
ations. Then the reflexive binary relation R∗ satisfies the inequality:
n∑

i=1

d(Ri, R∗) ≤

n∑
i=1

d(Ri, R) ∀R ∈ R (1)

f and only if R∗ is majoritarian for (R1, . . . , Rn).

emark 2. While the statements of Proposition 1 and
heorem 1 involve the larger set R of all reflexive binary rela-
ions, Theorem 1 can actually be proved (albeit differently) even if
he domain of the distance function was limited to complete and
eflexive binary relations.6 In the same vein, Theorem 1 would
remain valid if the binary relations (R1, . . . , Rn) with respect to
hich the majoritarian relation is defined were assumed to be
omplete and transitive.

The next theorem characterizes, somewhat dually, the prop-
rty of between-additivity of a distance as being essential for the
bility of a majoritarian binary relation to be representative in the
ense of aggregate distance minimization. Specifically, we prove
hat if a majoritarian binary relation for a given profile of binary
elations is to be distance-minimizing with respect to this profile
or some distance function, then the distance function must be
etween-additive.

heorem 2. Suppose d : R × R → R+ is a distance function
uch that, for every profile (R1, . . . , Rn) ∈ Rn for some n ≥

, a majoritarian binary relation R∗ for this profile satisfies the
nequality:
n

i=1

d(Ri, R∗) ≤

n∑
i=1

d(Ri, R) ∀R ∈ R (2)

hen d is between-additive.

6 The proof of this is available from the authors upon request.
4

Remark 3. The necessity of the between-additivity of the dis-
tance minimized by a majoritarian binary relation established by
Theorem 2 rides crucially upon the Triangle Inequality.

Remark 4. The proof of Theorem 2 actually establishes a
stronger result than what is stated. Indeed, the proof establishes
that for any given even integer n or ‘‘large enough’’ odd integer
n, any violation of between-additivity of a distance will give rise
to a profile of exactly n binary relations with respect to which a
majoritarian binary relation is not distance minimizing.

3. Conclusion

This paper has provided what we believe to be a significant
generalization of a (relatively) little known argument in favour of
the ‘‘preference of the majority’’ as a rule for collective decision
making. We have shown, in effect, that the preference of the ma-
jority is representative of the collection of preferences (reflexive
binary relations) from which it emanates in the sense of minimiz-
ing the sum of (semi)-distances between those binary relations
and itself for a reasonably general class of semi-distance func-
tions. We identified the largest class of distances between binary
relations that are minimized by the ‘‘preference of the majority’’.
This class consists of all distances that are between-additive.
The highly specific Kemeny distance, whose minimization by the
preference of the majority has been known for quite some time,
is of course one member of this class, among many others.

Indeed, as shown in Proposition 1, all semi-distances between
binary relations that can be written as an additive combination
of more primitive weights assigned to the ordered pairs of alter-
natives by which the two binary relations differ are minimized
by the majoritarian binary relation. The weights assigned to each
of the ordered pairs by the semi-distance may be interpreted
as reflecting some underlying ‘‘objective dissimilarity’’ between
the alternatives that may vary among them, and that may not
even be symmetric (the weight assigned to (x, y) may differ from
the weight assigned to (y, x)). We find remarkable that majority
minimizes even such additive distances that do not assume – as
the Kemeny distance does – that all pairs of alternatives have
the same dissimilarity. However, the between-additivity of the
distances between binary relations happens to be crucial for those
distances to be minimized in the aggregate by the ‘‘preference of
the majority’’. For, as shown in Theorem 2, any violation of this
property enables one, for any population of even size, and ‘‘almost
any’’ population of odd size, to construct a profile of binary
relations with respect to which majority is not representative in
the sense of aggregate distance minimization.

These results leave open at least two avenues for future re-
search. One of them would be to look for alternative binary rela-
tions that could qualify as representative in the sense of distance
minimization for different families of distances between prefer-
ences. While significant, the class of between-additive distances
is rather special. Looking at other family of possible distances
between binary relations that would be minimized in the aggre-
gate by other preferences than majoritarian strikes us as a worthy
topic of investigation. Another avenue for future research would
be to identify the properties of a primitive ordinal notion of dis-
similarity between preferences that are necessary and sufficient
for admitting a numerical representation taking the form of a
between-additive distance function. While we can identify some
axiomatic properties of an ordinal notion of similarity between
preferences that are necessary for admitting such a between-
additive numerical representation, the precise identification of
simple necessary and sufficient axioms remains to be done.
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ppendix. Proofs

.1. Lemma 1

For one direction of the implication (that does not actually
equire completeness), let R, R′ and R′′ be three binary relations
n X such that R′ is between R and R′′ as per Definition 1. Since
R ∩ R′′) ⊆ R

′

, condition (i) of the Lemma follows. Assume now
hat x and y are two alternatives such that (x, y) ∈ P(R) and
x, y) ∈ P(R

′′

). From the definition of the asymmetric factor of
binary relation, one has (x, y) ∈ R and (x, y) ∈ R′′ and, since

R ∩ R′′) ⊆ R′, one must have (x, y) ∈ R′. We now show that
y, x) /∈ R′ . Suppose to the contrary that (y, x) ∈ R′. Since R

′

(R ∪ R′′), one must have either (y, x) ∈ R or (y, x) ∈ R′′. But
either of these statements is consistent with the fact that both
x, y) ∈ P(R) and (x, y) ∈ P(R

′′

) hold.
For the other direction, assume that R, R′ and R′′ are three

omplete binary relations on X for which Statements (i) and (ii)
of the lemma hold. Statement (i) clearly implies that (R∩R′′) ⊆ R′.
Consider now any two alternatives x and y in X such that neither
(x, y) ∈ R nor (x, y) ∈ R′′ is true. We wish to show that (x, y) ∈ R′

does not hold. To see this, we observe that, since R and R′′ are
complete, the fact that neither (x, y) ∈ R nor (x, y) ∈ R′′ is true
implies that (y, x) ∈ P(R) and (y, x) ∈ P(R′′). By statement (ii)
of the lemma, this implies that (y, x) ∈ P(R′), which implies in
turn, from the very definition of the asymmetric factor of a binary
relation, that (x, y) /∈ R′, as required.

A.2. Lemma 2

By contradiction, suppose that d : R×R → R+ is a between-
additive semi-distance that violates the Triangle Inequality. This
means that there are binary relations R1, R2 and R3 ∈ R such that:

d(R1, R3) > d(R1, R2) + d(R2, R3) (3)

t is clear from this inequality and Definition 4 that R2 /∈ B(R1, R3).
e now establish that inequality (3) applied to a between-

dditive semi-distance also rules out the possibility that R1 ∈

(R2, R3) or that R3 ∈ B(R1, R2). Assume indeed that R1 ∈

(R2, R3). By between-additivity (Definition 4), this entails that:

(R2, R3) = d(R2, R1) + d(R1, R3)

nd, after substituting into the right hand side of inequality (3):

(R1, R3) > d(R1, R2) + d(R2, R1) + d(R1, R3)
= 2d(R1, R2) + d(R1, R3) (by symmetry)

⇐⇒ 0 > 2d(R1, R2)

contradiction of d(R1, R2) ∈ R+. Hence R1 /∈ B(R2, R3). An
nalogous argument leads to the conclusion that R3 /∈ B(R1, R2).
Consider then the binary relation R̃2 defined by:

2 = (R2 ∪ (R1 ∩ R3))\(R2\(R1 ∪ R3))
= (R1 ∩ R2) ∪ (R2 ∩ R3) ∪ (R1 ∩ R3) (using De Morgan’s law).

2 is distinct from R2 if R2 /∈ B(R1, R3). It is clear from the second
quality and the definition of betweenness that R̃2 ∈ B(R1, R3),
2 ∈ B(R1, R2) and R̃2 ∈ B(R2, R3). Using between-additivity, we
an write inequality (3) as:

(R1, R̃2) + d(̃R2, R3) > d(R1, R̃2) + d(̃R2, R2) + d(R2, R̃2)

+ d(̃R2, R3)
⇐⇒

0 > 2d(̃R2, R2) (using symmetry)

hich is a contradiction to the non-negativity of d.
5

.3. Proposition 1

We first show that any function d : R × R →R+ that can be
ritten, for any R1 and R2 ∈ R, as:

(R1, R2) =

∑
(x,x′)∈R1∆R2

δ(x, x′) (4)

or some δ : X × X → R+ satisfying Zero at Identity Only is a
etween-additive semi-distance as per Definition 3. To show that
satisfies Zero at Identity Only, assume first that R1 = R2. Then

R1\R2) = (R2\R1) = R1∆R2 = ∅ so that:

(R1, R2) =

∑
(x,x′)∈∅

δ(x, x′) = 0

For the other direction, suppose that d(R1, R2) =
∑

(x,x′)∈R1∆R2
δ(x, x′) = 0. Then R1 = R2 because assuming otherwise would
mply, given the reflexivity of both R1 and R2, that at least one
rdered pair (x, y) with x ̸= y belongs to R1∆R2 ̸= ∅ and
ould therefore contradict the assumption that δ satisfies Zero
t Identity Only.
We now observe that the symmetry of d is an immediate

consequence, given (4), of the fact that R1∆R2 = R2∆R1.
We finally show that d satisfies between-additivity. That is,

for any three reflexive binary relations R1, R2 and R3 such that
2 ∈ B(R1, R3), we show that d(R1, R2) + d(R2, R3) = d(R1, R3).
sing (4), one can write:

(R1, R2) + d(R2, R3) =

∑
(x,x′)∈R1∆R2

δ(x, x′) +

∑
(y,y′)∈R2∆R3

δ(y, y′) (5)

e observe that R △ R′
= (R ∪ R′)\(R ∩ R′) for any two binary

elations R and R′. We now prove that the sets (R1 ∪R2)\(R1 ∩R2)
nd (R2 ∪ R3)\(R2 ∩ R3) are disjoint. Indeed, suppose that (x, x′) ∈

R1 ∪ R2)\(R1 ∩ R2). Then, either (i) (x, x′) ∈ R1\R2 or (ii) (x, x′) ∈

2\R1. In case (i), we know that (x, x′) /∈ R3\R2 (by definition of
2 ∈ B(R1, R3)) . Since by assumption (x, x′) /∈ R2, one has (x, x′) /∈

2\R3. Hence (x, x′) /∈ (R2\R3) ∪ (R3\R2) = (R2 ∪ R3)\(R2 ∩ R3).
In case (ii), we know by definition that (x, x′) /∈ R3\R2 (because

x, x′) ∈ R2) . Since R2 ∈ B(R1, R3), one cannot have (x, x′) ∈ R2\R3
because R2 ⊂ R1 ∪ R3) . Hence any ordered pair in the set
R1 ∪ R2)\(R1 ∩ R2) is not in the set (R2 ∪ R3)\(R2 ∩ R3) so that
he two sets are disjoint. We now show that:

(R1 ∪ R2)\(R1 ∩ R2)] ∪ [(R2 ∪ R3)\(R2 ∩ R3)] = (R1 ∪ R3)\(R1 ∩ R3)

We first prove that [(R1 ∪ R2)\(R1 ∩ R2)] ∪ [(R2 ∪ R3)\(R2 ∩

3)] ⊂ (R1 ∪ R3)\(R1 ∩ R3). Consider for this sake any pair of
lternatives (x, x′) ∈ [(R1 ∪ R2)\(R1 ∩ R2)] ∪ [(R2 ∪ R3)\(R2 ∩ R3)].
our (non-mutually exclusive) cases are compatible with this
onsideration:
(i) (x, x′) ∈ R1\R2
(ii) (x, x′) ∈ R2\R1
(iii) (x, x′) ∈ R2\R3
(iv) (x, x′) ∈ R3\R2.
Consider case (i): Since R2 ∈ B(R1, R3), one cannot have

x, x′) ∈ R3 (because this would imply (x, x′) ∈ R1 ∩ R3 ⊂ R2,
n contradiction of (x, x′) ∈ R1\R2) . Hence (x, x′) ∈ R1\R3 ⊂ (R1 ∪

3)\(R1∩R3). Suppose now that we are in case (ii). By assumption
x, x′) /∈ R1 and (x, x′) ∈ R2 ⊂ R1∪R3 (since R2 ∈ B(R1, R3)) . Hence
x, x′) ∈ R3\R1 ⊂ (R1 ∪ R3)\(R1 ∩ R3). For cases (iii) and (iv), we
ust apply the argument of case (ii) and (i) (respectively) up to
ermuting R1 and R3.
We now prove that (R1 ∪ R3)\(R1 ∩ R3) ⊂ [(R1 ∪ R2)\(R1 ∩

2)] ∪ [(R2 ∪ R3)\(R2 ∩ R3)]. Let (x, x′) ∈ (R1 ∪ R3)\(R1 ∩ R3). This
eans either that (x, x′) ∈ R1\R3 or that (x, x′) ∈ R3\R1. In the

irst case either (x, x′) ∈ R2 (in which case (x, x′) ∈ R2\R3 ⊂

(R ∪R )\(R ∩R )]∪[(R ∪R )\(R ∩R )]) or (x, x′) /∈ R (in which
1 2 1 2 2 3 2 3 2
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ase (x, x′) ∈ R1\R2 ⊂ [(R1 ∪ R2)\(R1 ∩ R2)] ∪ [(R2 ∪ R3)\(R2 ∩ R3)]
. The argument for the other case is similar since the sets

R1 ∪ R2)\(R1 ∩ R2) and (R2 ∪ R3)\(R2 ∩ R3) are disjoint and:

[(R1 ∪ R2)\(R1 ∩ R2)] ∪ [(R2 ∪ R3)\(R2 ∩ R3)] = (R1 ∪ R3)\(R1 ∩ R3)

ne can write equality (5) as:

(R1, R2) + d(R2, R3) =

∑
(x,x′)∈R1△R2

δ(x, x′) +

∑
(y,y′)∈R2△R3

δ(y, y′)

=

∑
(x,x′)∈R1△R3

δ(x, x′)

= d(R1, R3)

s required by between-additivity.
In the other direction, we now prove that any between-

dditive semi-distance function d : R × R →R+ can be written
s per (4) for some function δ : X × X → R+ satisfying Zero at
dentity Only. We first show that any between-additive distance
unction d : R × R →R+ satisfies the (very strong) independence
roperty that for any two reflexive binary relations R1 and R2 and
lternatives x and y ∈ X such that (x, y) /∈ R1 ∪ R2, one has:

(R1, R1 ∪ {(x, y)}) = d(R2, R2 ∪ {(x, y)}) (6)

ence, the ‘‘distancing’’ from an existing binary relation brought
bout by adding to it any ordered pair of alternatives does not
epend upon the binary relation to which the ordered pair is
dded. It only depends on the ordered pair itself. To show this,
e first observe that:

1 ∪ {(x, y)} ∈ B(R1, R2 ∪ {(x, y)}) (7)

ecause:

1 ∩ (R2 ∪ {(x, y)}) = R1 ∩ R2 ⊂ R1 ⊂ R1 ∪ {(x, y)} ⊂ R1 ∪ {(x, y)}
∪ R2 = R1 ∪ (R2 ∪ {(x, y)})

e also observe that:

2 ∈ B(R1, R2 ∪ {(x, y)}) (8)

ecause:

1 ∩ (R2 ∪ {(x, y)}) = R1 ∩ R2 ⊂ R2 ⊂ R2 ∪ {(x, y)} ⊂ R2 ∪ {(x, y)}
∪ R1 = R1 ∪ (R2 ∪ {(x, y)})

or the same reason, we also conclude that:

2 ∪ {(x, y)} ∈ B(R2, R1 ∪ {(x, y)})

nd:

1 ∈ B(R2, R1 ∪ {(x, y)})

t follows from between-additivity that:

(R1, R2 ∪ {(x, y)}) = d(R1, R1 ∪ {(x, y)}) + d(R1 ∪ {(x, y)}, R2

∪ {(x, y)})
= d(R1, R2) + d(R2, R2 ∪ {(x, y)})

ence (summing these two last equalities):

d(R1, R2 ∪ {(x, y)}) = d(R1, R1

∪ {(x, y)}) + d(R1 ∪ {(x, y)}, R2 ∪ {(x, y)})
+ d(R1, R2) + d(R2, R2 ∪ {(x, y)})
= 2d(R2, R1 ∪ {(x, y)})

hanks to the symmetry of d. Hence:

(R1, R2 ∪ {(x, y)}) = d(R1, R1 ∪ {(x, y)}) + d(R1 ∪ {(x, y)}, R2

∪ {(x, y)})
6

= d(R2, R1 ∪ {(x, y)})
= d(R2, R2 ∪ {(x, y)}) + d(R2 ∪ {(x, y)}, R1

∪ {(x, y)})

which implies (thanks again to the symmetry of d) that d(R1, R1∪

{(x, y)}) = d(R2, R2∪{(x, y)}), as required. Define now the function
δ : X × X → R+ for any (x, y) ∈ X × X by:

δ(x, y) = d(R, R ∪ {(x, y)})

for some R ∈ R such that (x, y) /∈ R if x ̸= y and by:

δ(x, x) = 0

for all x ∈ X . This function δ is well-defined since, as we just
established, d(R1, R1 ∪ {(x, y)}) = d(R2, R2 ∪ {(x, y)}) > 0 for all
R1 and R2 ∈ R such that (x, y) /∈ (R1 ∪ R2) if x ̸= y. It satisfies by
onstruction δ(x, x) = 0 for every x ∈ X .
Consider now any two distinct reflexive binary relations R1

and R2. Observe that, for any (x, y) ∈ R1\R2 = R1\(R1 ∩ R2) one
as R1\{(x, y)} ∈ B(R1, R2).
Therefore, exploiting the between-additivity of d:

(R1, R2) = d(R1, R1\{(x, y)}) + d(R1\{(x, y)}, R2)

= δ(x, y) + d(R1\{(x, y)}, R2) (9)

hanks to the definition of δ and the symmetry of d. Since R1 =

(x,y)∈R1\R2
{(x, y)}∪ (R1∩R2), one can apply the argument leading

o Equality (9) iteratively and obtain:

(R1, R2) =

∑
(x,y)∈R1\R2

δ(x, y) + d(R1 ∩ R2, R2)

One can finally apply a similar decomposition of d(R1 ∩ R2, R2)
working this time with R2\R1 = R2\(R1 ∩ R2)) to finally obtain:

(R1, R2) =

∑
(x,y)∈R1\R2

δ(x, y) +

∑
(x′,y′)∈R2\R1

δ(x′, y′)

s required by (4).

.4. Theorem 1

.4.1. Sufficiency
Suppose that R∗ and d are, respectively, a majoritarian binary

elation for a profile (R1, . . . , Rn) ∈ Rn (for some integer n ≥ 2)
nd a between-additive semi-distance function from R × R →

+ Consider any reflexive binary relation R ∈ R. We need to
how that

∑n
i=1 d(Ri, R∗) ≤

∑n
i=1 d(Ri, R). Using Proposition 1,

his amounts to show that:
n∑

i=1

∑
(xi,x′i)∈Ri∆R∗

δ(xi, x′

i) ≤

n∑
i=1

∑
(yi,y′i)∈Ri∆R

δ(yi, y′

i)

⇐⇒∑
x,x′)∈X×X

δ(x, x′)#{i : (x, x′) ∈ Ri∆R∗
}

≤

∑
(x,x′)∈X×X

δ(x, x′)#{i : (x, x′) ∈ Ri∆R} (10)

or some function δ : X × X → R+ satisfying Zero at Identity
nly.
By reflexivity of R∗, Ri (for any i) and R, we can assume that

ll pairs of alternatives (x, x′) involved in inequality (10) are such
hat x ̸= x′. We will now show that for any pair (x, x′):

{i : (x, x′) ∈ Ri∆R∗
} ≤ #{i : (x, x′) ∈ Ri∆R}. (11)

y contradiction, suppose there is a pair (̂x, x̂′) ∈ X×X such that:

{i : (̂x, x̂′) ∈ R ∆R∗
} > #{i : (̂x, x̂′) ∈ R ∆R}
i i
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r, equivalently:

{i : (̂x, x̂′) ∈ Ri\R∗
} + #{i : (̂x, x̂′) ∈ R∗

\Ri} > #{i : (̂x, x̂′) ∈ Ri\R}

+ #{i : (̂x, x̂′) ∈ R\Ri} (12)

By definition of R∗ being majoritarian for the profile
R1, . . . , Rn), one has (using Remark 1):

{i : (̂x, x̂′) ∈ Ri\R∗
} ≤ n/2

nd:

{i : (̂x, x̂′) ∈ R∗
\Ri} < n/2

oreover, one of the four following mutually exclusive possibil-
ties must hold:

(i) (̂x, x̂′) ∈ R∗
\R

(ii) (̂x, x̂′) ∈ R\R∗

(iii) (̂x, x̂′) /∈ R ∪ R∗

(iv) (̂x, x̂′) ∈ R ∩ R∗.
In case (i) #{i : (̂x, x̂′) ∈ Ri\R∗

} = 0 = #{i : (̂x, x̂′) ∈ R\Ri}.
ence inequality (12) applied to this case reduces to:

/2 > #{i : (̂x, x̂′) ∈ R∗
\Ri}

> #{i : (̂x, x̂′) ∈ Ri\R}
= #{i : (̂x, x̂′) ∈ Ri ∩ R∗

}

≥ n/2

here the last inequality results from the definition of R∗ being
ajoritarian (Remark 1). This is a contradiction.
In case (ii), one has #{i : (̂x, x̂′) ∈ R∗

\Ri} = 0 = #{i : (̂x, x̂′) ∈

i\R}. Hence inequality (12) applied to this case writes:

/2 ≥ #{i : (̂x, x̂′) ∈ Ri\R∗
}

> #{i : (̂x, x̂′) ∈ R\Ri}

= #{i : (̂x, x̂′) /∈ Ri ∪ R∗
}

≥ n/2

hich is also a contradiction.
If case (iii) holds, one has #{i : (̂x, x̂′) ∈ R∗

\Ri} = 0 = #{i :

x̂, x̂′) ∈ R\Ri} so that inequality (12) writes:

/2 ≥ #{i : (̂x, x̂′) ∈ Ri\R∗
}

= #{i : (̂x, x̂′) ∈ Ri}

> #{i : (̂x, x̂′) ∈ Ri\R}
= #{i : (̂x, x̂′) /∈ Ri}

hich is again a contradiction.
Finally if one assumes that (̂x, x̂′) ∈ R ∩ R∗, then {i : (̂x, x̂′) ∈

i\R∗
} = {i : (̂x, x̂′) ∈ Ri\R} and {i : (̂x, x̂′) ∈ R∗

\Ri} = {i : (̂x, x̂′) ∈

\Ri} so that inequality (12) is contradictory in that case as well.
Hence, for every reflexive binary relation R, a majoritarian R∗

atisfies inequality (11) for any pair of alternatives (x, x′) and,
herefore, satisfies also inequality (10).

.4.2. Necessity
Let R∗ be a reflexive binary relation on X that is not majori-

arian for the profile of reflexive binary relations (R1, . . . , Rn) for
ome integer n ≥ 2. We must show that for any between-additive
emi-distance function d : R × R → R+, one can find a binary
elation R′ such that
n

i=1

d(Ri, R∗) >

n∑
i=1

d(Ri, R
′

) (13)

For this sake, we observe that R∗ not being majoritarian means
Definition 2) that R∗ /∈ B(Rw(R1, . . . , Rn), Rs(R1, . . . , Rn)). Hence
ither (i) Rw(R1, . . . , Rn) ∩ Rs(R1, . . . , Rn) ⊈ R∗ or (ii) R∗ ⊈
w(R , . . . , R ) ∪ Rs(R , . . . , R ). Case (i) implies the existence of
1 n 1 n o

7

lternatives x and y ∈ X for which #{i : (x, y) ∈ Ri} > n/2 and
x, y) /∈ R∗. Define for this case the binary relation R′ by R′

=
∗

∪ {(x, y)}. Consider then any between-additive semi-distance
unction d : R × R → R+. We have, using Proposition 1:
n

i=1

d(Ri, R∗) −

n∑
i=1

d(Ri, R
′

) =

n∑
i=1

(
∑

(xi,x′i)∈Ri∆R∗

δ(xi, x′

i)

−

∑
(yi,y′i)∈Ri∆R′

δ(yi, y′

i)) (14)

or some function δ : X × X −→ R+ satisfying Zero at Identity
nly.
Equality (14) can equivalently be written as:

n

i=1

d(Ri, R∗) −

n∑
i=1

d(Ri, R
′

) =

∑
(a,b)∈X×X

[#{i : (a, b) ∈ Ri∆R∗
}

− #{i : (a, b) ∈ Ri∆R
′

}]δ(a, b)

=

∑
(a,b)∈X×X :(a,b)̸=(x,y)

[#{i : (a, b) ∈ Ri∆R∗
}

− #{i : (a, b) ∈ Ri∆R′
}]δ(a, b)

+ [#{i : (x, y) ∈ Ri∆R∗
} − #{i : (x, y) ∈ Ri∆R

′

}]δ(x, y)
= [#{i : (x, y) ∈ Ri\R∗

} − #{i : (x, y) ∈ (R∗
∪ {(x, y)})\Ri}]

× δ(x, y)
> [n/2 − #{i : (x, y) ∈ (R∗

∪ {(x, y)})\Ri}]δ(x, y)
≥ 0 (because n/2 ≥ #{i : (x, y) ∈ (R∗

∪ {(x, y)})\Ri})

hich establishes inequality (13) for this case. Case (ii) on the
ther hand implies the existence of alternatives x and y ∈ X for
hich #{i : (x, y) ∈ Ri} < n/2 and (x, y) ∈ R∗. Define for this case
he binary relation R′ by R′

= R∗
\{(x, y)}.

One would then have (following the same reasoning as above):
n

i=1

d(Ri, R∗) −

n∑
i=1

d(Ri, R
′

) =

n∑
i=1

(
∑

(xi,x′i)∈Ri∆R∗

δ(xi, x′

i)

−

∑
(yi,y′i)∈Ri∆R′

δ(yi, y′

i))

= [#{i : (x, y) ∈ R∗
\Ri} − #{i : (x, y) ∈ Ri\(R∗

\{(x, y)})}]δ(x, y)
> [n/2 − #{i : (x, y) ∈ Ri\(R∗

\{(x, y)})}]δ(x, y)
> 0 (because n/2 > #{i : (x, y) ∈ Ri\(R∗

\{(x, y)})})

.5. Theorem 2

Suppose that a distance d : R × R → R+ is not between-
dditive. This means that there are reflexive binary relations R1,
2 and R3 on X such that R2 ∈ B(R1, R3) and:

(R1, R3) < d(R1, R2) + d(R2, R3) (15)

sing the Triangle Inequality. We will show that, for any even
nteger n, one can construct a profile of reflexive binary relations
ith respect to which a majoritarian binary relation will not min-

mize the sum of distances between itself and the binary relations
f the profile. We will also show, somewhat less strongly, that for
nfinitely many odd integers (but not necessarily for all of them),
e can also make such constructions. Suppose first that n is even.
onsider the profile (̂R1, . . . , R̂n) ∈ R defined by,

R̂1, . . . , R̂n) = (R1, . . . ., R1  , R3, . . . , R3  )
n/2 n/2

t is clear that the two binary relations R1 and R3 are majoritarian
n this profile. Let us now show that R is also majoritarian on
2
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H
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M

M
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S
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his profile. For this sake we use Remark 1, and we first consider
ny alternatives x and y such that (x, y) ∈ R2.
Since R2 ∈ B(R1, R3), one must have (x, y) ∈ R1 ∪ R3. Hence, at

least one of the two binary relations R1, or R3 must contain the
air (x, y) . Hence #{i : (x, y) ∈ R̂i} ≥

n
2 .

Consider now x and y such that (x, y) /∈ R2. Since R2 ∈ B(R1, R3)
nd, as a result, R1 ∩ R3 ⊂ R2, one must have that (x, y) /∈ R1 ∩ R3.
ence there can be at most one of the two binary relations R1
nd R3 that contain the pair (x, y). Put differently #{i : (x, y) ∈

i} ≤
n
2 as required by the second condition of Remark 1. Hence

2 is indeed majoritarian on the profile (̂R1, . . . , R̂n). However, R2
oes not minimize the sum of distances between itself and each
f the n binary relations of the profile because,from inequality

(15) and the property of Zero at Identity Only, one has (using
Symmetry):
n∑

i=1

d(R1, R̂i)

= (n/2)d(R1, R1) + (n/2)d(R1, R3)
= (n/2)d(R1, R3)
< (n/2)d(R1, R2) + (n/2)d(R2, R3)

=

n∑
i=1

d(R2, R̂i)

ence R1 (but the argument would work just as well for R3) has
strictly smaller aggregate distance from the binary relations of
he profile than R2. Suppose now we focus on profiles with an odd
umber n of binary relations. For any such n, consider the profile
R̂1, . . . , R̂n) defined by:

R̂1, . . . , R̂n) = (R1, . . . ., R1  , R2, R3, . . . , R3  )
(n − 1)/2 (n − 1)/2

It is easy to see that R2 is the unique majoritarian binary relation
n any such profile. Let us show that there exists some odd n∗

≥ 3
uch that for any n ≥ n∗, one has:
n

i=1

d(R∗

i , R̂i) <

n∑
i=1

d(R2, R̂i)

for some binary relation R∗

i distinct from R2 (so that the majori-
arian R2 does not minimize the sum of distances between itself
nd all other binary relations of the profile for such n) . Define
or this purpose R∗

i ∈ argminRi∈{R1,R3} d(Ri, R2) and suppose, by
ontradiction, that for all odd n, one has:
n∑

i=1

d(R∗

i , R̂i) ≥

n∑
i=1

d(R2, R̂i)

iven the definition of the profile (̂R1, . . . , R̂n), this is equivalent
to assuming that for all odd n:
8

(n − 1)
2

d(R∗

i , R1) + d(R∗

i , R2) +
(n − 1)

2
d(R∗

i , R3)

= d(R∗

i , R2) +
(n − 1)

2
d(R1, R3)

≥
(n − 1)

2
d(R1, R2) +

(n − 1)
2

d(R2, R3)

⇐⇒

(R∗

i , R2) ≥
(n − 1)

2
[d(R1, R2) + d(R2, R3) − d(R1, R3)]

where the first equality uses the property of Zero at Identity Only.
But observing this inequality for any odd integer n is incompat-
ible with the (positive) finiteness of d(R∗

i , R2) = min(d(R1, R2),
(R2, R3)) and the assumed positivity of d(R1, R2) + d(R2, R3) −

(R1, R3).
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